
r
~~
‘AD—AO52 735 CI4ARI.E$ STARK DRAPCR LAS INC CAMBRIDSE MA F/S t/2

JOVIAL STRUCTURED DE SISI4 DI ASRAMM ER (.J$OO ~. VOLUME IV. USER’S M—ETC(U)
FEe 76 5 S000ARD’ M WH ITW ORT Hi C STROV IMI F3060$—76—C—OtSS

UNCLASSIFIED R 1t2O VO4. * RADC—TR 75-+V0I.fl ML

•

5:78

I

- - - - _ _ _

~~~ RADC-TR-78-9, Vol IV (of four)

L~ ~~~~~~~~~~~ 
Report

JOVIAL STRUCTURED DESIGN DIAGRAI’VIER (JSDD),
User’s Manual

I
~~~ G. Goddard

14. Whitworth
E. Strovink

The Charles Stark Draper Laboratory, Inc. C.’

~~~~ Approved for public telease; distribution unlimited .

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Oriff iss Ai r Force Sos., New York 13441



___________________________________________ - 
~~~~~~~ ~~~~~~~~~~~~~~~ ~~~ ‘— ~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~

~~~~ ~~ / I i  
~~~~~~~~~~~~~~~~~~~~~~~~~~~UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE ($3~.si Del. EnI.r.d)

DE
~~~

DT IIUE~
IrATIAkI DArR READ INSTRUCTIONS

~~ ~~~~~~~~~~ ‘‘ I ~ BEFORE COMPLETING FORM
I. REPORT NUMBER 12. GOVT ACCESSION NO, 3. REC IPIENT ’S C A T A L O G  NUMBER

RAD C— TR—78—9 , Vol IV (of four) 4’ ____________________________

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~ (e;:;\ir. ~~~~~~~~~~~~~~~ fl

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (
~~~~~~~)b  

~~ ~~~~~~~~~~~~~~~~~
—s 

v~~ I ~~~~±LLJ~ J 
(~~ 

~~~~~~~~~~~~~~ UU :i~~ 

~~~~~~~~~~~~

I ~ -“~~ t ,,,,,, ~, • -I...

G. 14oddard~ J
~ M . / ~Jhitworth ( f~j  ~~ 6,ø2_ 76_C_$’4ø~~]
L E.~~~trovink 

~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

r 1~IRFORMING ORGANIZATION NAM E AND ADDR ESS tO. PROGRAM ELEMENT. PROJECT , TASK
AREA 6 WORK UNIT NUMBERS

The Charles Stark Draper Laboratory , Inc.
555 Technology Square .E. 62702F
Cambridge ~4A 02139 1.0. 55811412
II . CONTROLLING OFFICE NAME AND ADDRESS ~~~~~~~~~~~~~~~~~~

Rome Air Development Center (IS1M) ,Jj , Feb~~~~~c~~78
Grif f iss AFB NY 13441 “—..• is. N U M B E R O F P A

31 
~~~~~ 3~f14. MONITORING AGENCY NAME & ADDRESS(I1 differen t from Controlling Office) IS. SECURITY CL o I repo

Same

~~~~~~ ~~~~~~~~~~~~ ~~~ DECLA SS IF ICAT ION/ DOW NG RAOI NG

I/A 
SCHEDULE

16. DISTRIBUTION STATEMENT (of thu Report)

Approved for public release; distribution unlimited.

1~ . DISTRIBUTION STATEMENT (of the .bstr.ct entered in Block 20, If diff.ren t from Repor t)

Same

19. SUPPLEMENTARY NOTES (
RADC Project Engineer: Donald Van.Alstine (ISIM) ~~~
19. KEY WORDS (Conlinu. on rev.?.. l id.  ii nec...ary wd identify by block nurnb.r)
Structured Programming Preprocessor
Structured Design Diagram Floweharter
Structured Extension JOVIAL J3
Parse Invocation Diagram
Parser Generator

20. Aa~ T RACT (Continue on revere. aid. If n.cea.ary end id.ntffy by block number)

The report presents the user ’s view of the JOVIAL Structured Design
Diagrammer along with user options and other information about running the
programs . 

~

DD 
~~~~~~~ 

1473 EDITION OF I NOV 68 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATI ON OF THIS PAGE (Il3~•n Out. Ent e r e d)

~ O’~/ ~~~
~~~——.--~~~- - ~~~~~~~~~~~ .,



r—1 - — ‘—‘- ‘-——--—-~~‘ w ~~~~~ . “~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ...r ,_ ~~~ -
. - ~~.r’-’ ~~~~~~

USER’S MANUAL

This documet~t was produce d to sat is f y  the re qu i rements
of contract  num ber F3 0602—7 6—C— 0408 w i th the Rome A ir
Development Center. It is one of four companion
volumes’

* JOVI AL Structured Design Diagra mmer (JSDD )
Report Summary

This document is a summary of the contents of
the JSDD Final Report.

* JOVIAL Structured Design Diagrarnmer (JSDD )
Final  Re port

This vol um e presents the design techniques
for im p lement ing the JSDD and desc r i bes t he
use of Structured Design Diagrams .

* JOVIAL Structured Design Diagrainmer (JSI)D )
Program Description

This volume presents a detailed description
of the p rogram imp lement at ion for  pur poses of
maintain ing and/or modifying the JSDD.

* JOVIAL Structured Design Diagrammer (JSDD )
User ’s Manual

This volume presents the user’s v i ew o f th e
JSDD along w i th user opt ions and other
Informat ion about running the program .

ACCFSS”N ~or 
_______

W i ~e SeCt ion

D~C 3: Se.~’on 0
I r4~~~~p~j) l’4’ l’t 0

It’ I

BY

~srRi8 ’j r!cNIAVA~(AI’:ffT COOES
0,: - SPr~CI 

~~~~~~~~~~~ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ —

Acknowl edgement

fhis report was prepared by I’he Charles Stark Draper Laboratory,
Inc., under Contract F30602—76—C—0408 with the Rome Air
L)evelopment Center at Oriffis Air Force Base.

Especial credit is due Margaret Hamilton , who pioneered
principles of Structured Programming at Draper Laboratory.
Saydean Zeidiri originally suggested the syrnbology implemented in
the output of the JOVIAL Structured Design Diagrammer . Thanks
should go also to ~il1 iam Daly, who created the Structured Design
L)iagrammer for the HAL language (currently being used on the -JASA
Space Shuttle project ). The authors are indebted to Victor

- Voydock for his invaluable assistance in im plementing a complete
i’4ULTICS user interface which was used successfully for the
duration of the JSDL) implementation. The authors are also
grateful to J. Barton De,~olf whose litany suggestions were of great
assis tance throughout this e f fo r t .

- - 
-- - - ~~~-



r !•‘~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ‘T ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ . —

- 4

TABLE OF CONTENTS

Section Page
1. IntroductIon — 5

2. Structured Design Diagram Description ____________ 7

3. Invocation Diagram Descr iption _______ _______
13

4. Running the JSDD System -, Jo

5. Detailed Options -—-- 19

6. Contro l Cards for Running the JSDD_______________ 25

Appendix A. The DOG and Invocation Diagrammner Options
Compool

__________________ - .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,~~~~~~

I. Introduction

Thi5 document is a user—oriented description of the
input/output files and operating procedures necessary to run
the JOVIAL Structured Design Diagrammer (JSDD).

The JOVIAL Structured Design D iagrammer Is designed to run
on all Honeywell Informat ion Systems Inc. Series 6000
computers providing for application program use at least one
disk drive , one l ine pr inter , and 96K of user memory.
Additionally, the computer system should include as much
extra memory and as many extra input/output devices as are
required to execute the JSDD under control of the Honeywell
Information Systems Inc . Series 60 Level 66 and Series 6000

- - General Comprehensive Operating Supervisor (OCOS) Version
I/O. The consequences of running the JSDD on another
computer or operating system have not been determined. The
fact that the JSDD is written in JOVIAL J3 (a JOCIT
compiler ) raises hopes that it may in fact be portable.

The JSDD produces a graphi cal representat ion of the con trol
and processing structure of programs written in the JOVIAL
J3 programming language , w ith or wi thout structure d
extens ions (see Final Report , Section 6). It can be
thought of as the f irst component of an integrated soft ware
analys is and documentat ion syst em whi ch addr esses itself to
the problem of standardizing the loose collection of
software des ign guidel ines known as “structure d
programming. ” This first component consists of an
automated documentat ion system whic h produces two ty pes of
di agrams z Structured Design Diagrams (SDDs ) and Invocation
Diagrams . SDDs provide a graphic display of program
contro l logic. Invocation Diagrams are a display of a
sof tware system’s funct ional (calling) structure .

The experienced systems programmer will find the SDD and
Inv ocation Diagram valuable aids in understanding unfamiliar
programs. The SDD makes nested control logic transparent
and readable , wh i le the Invocation D iagram prov ides a
deta iled control map at a procedural level of abstraction.
Both of these tasks must be comp lete d manually in the

•, absence of automated tools.

The JSDD has additional utility in system desi gn
applications , because by its graphi cal representat ion it
highlights use of unstructured programm ing constructs as

D



~~~
— — --.-- - — —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

we ll as poorly—considered control paths . Thus, It can be
used as a tool to encourage (and with Incorporation into a
larger softwa re analysis and documentation system , enforce)
good programming practices.

The use of the JSDD programs requires an understanding of
the JSDD diagrams produced as output; thus, the User’s
Manual is arranged to reflect this prerequisite. Fi rst,
Section 2 discusses SDDs and Section 3 discusses Invocation
Diagrams. Section 4 then gives a genera l overview of JSDD
running procedures. Section 5 expands upon Section 4 by
descr ibing the various options available to the JSDD user.
Finally, Section 6 introduces the control ca rds nec ess ary to
run the JSDD programs in the MULTICS OCOS Encapsulator
environment.

6



I, - — - -  ~~~-~~ -— - - - ----~~ - - 
- 

-~~~ - - - —.... ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

2. Structured Design Diagram (SOD) Description

Structured Design Diagrams (SDDs ) provide a graphic two
dimensional display of the nested logical sequences that
define the structure of a computer program . SDDs for JOVIA L
J3 are constructed from the two basic structural elements
shown in figure 2—1 .

SEQUENTIAL FLOW DECISION BRANCHING

I-inur e 2—I . SDD Primitives

The rectangular box is used to contain elements that are
executed in sequence. Control enters from the top or left
side of the rectangle. Each element in a rectangle is
executed in sequence and control flows through the bottom of
the box.

The pentagonal box is used to contain two types of JOVIAL
constructs: module heads and decision making elements. A
module head is a <PROGRAM HEAD> , <PROC DESCRIPTOR> or <CLOSE
HEAD> (see the syntax definition of JOVIAL in Section 5 of
the JSDO Final Report) . Control passes through the bottom of
a module head’s pentagonal box to the module’s code body.
Fi g u r e s  2-2 , 2—3 and 2—4 illustrate SDD representations of
module heaas.

STAR TS )
PROGRAM
CODE
BODY

i-i~ ure 2—2 . SDD representat ion of <PPWRAM HEAL)>

7



- * —

[
~~~ OC PROC.NAME ( I

PROCEDURE
DECLARATION
CODE
BODY

I-Inure ~ -3. SDD representat ion of <PRLiC DESCEflI-TUR>

CLOSE CLOSE’NAME s) \
-

CLOSE DECLARATION
CODE BODY

}- içure 2—4. SDD representation or <CLO5E HEAD>

A decision making element is a JOVIAL construct w.’iich
directs the flow of contro l to one of two paths. Evaluci.ion
of the contents of the pentagonal box determines the path to
which control is passed. Figures 2—5, 2—6, 2—7 and 2—B
illustrate the SDD representaions of JOVIAL’s decision
making elements. Non—standard decision making elements have
been introduced as structured extensions to JOVIAL J3. The
structured extensions are the Do ~‘1hile Loop, the Do Unt il
Loop and the Case Statement. Full descri ptions of these new
constructs are available in Section 6 of the JSDD Final
Report.

CODE
IF (B OOLEAN FORMULA)S (\ DONTROLLED

DO ~<B OOLEAN FORMULA >1 ~Y~~~~SION

ELEMENT

k-i nure 2—5 . SLL~ representat ion of the It State ment ,
Do vthi le Loo p and Do Until Loop

8 f1-
- - - - ---*- .-- ---- ~~ - -~~ -- * ----- - - - - —-- -- - -. - —---~--- -

______________________ — ~~~~~~~~~~~~~~~~~~ - ----S ‘-S — --- --- - 5-

1• -

FOR I (L OOP INDICES > LOOP BODY
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1-i~~ure 2—o . SUD representation of the i-or Loop

[~DO CASE [AAT) (~]) f CODE FOR

I__I (CODE FOR

J
I CASEI

INI
cODE FOR

Ei~ ure 2—i. SDD re presenta ti on of the Do Case Statement

IF E ITH~~)
-J <BOOLEAN FORMULA) ~ I ~ 1

~
__I0~

IF (BOOLEAN FORMULA)) ~~

L~~~~~F m OOL EAN FORMULA) ggg~

h-iç .ure 2—b. SUD representalon of the Al ternat ive Statement

9

— --~~~~~~-*- .* -S --S * - - - -- - -S--- - -—- --~~~~~~~~- - ------~~~~~~~~~~~~~~~

— ~~~~~~~~
- - ~~~~~~~~~~~~~

—
- --S-S -

Pentagonal boxes containing decision making elements are
entered from the top or from the left. In general , they are
exited by taking the horizontal path (to the ri ght) or by
taking the vertical path (through the bottom of the
pentagon). The horizontal path is taken if the decision
element is evaluated to be TRUE. Otherwise , the vert ical
path is taken. Note that the SDD representations of the Do
Case Statement and Alternat ive Statement contain “DO CASE-”
and -“IFEITI-f” decision making elements. These elements are

-always evaluated to be TRUE.

If a decision making element is evaluated to be false and
Its pentagon has no vertical path , then the SDD execution
path must be retraced until a pentagon is found which has an
unexecuted vertical path . If such a pentagon is found , then
the vertical path must be followed. If no such pentagon is
found, then the execut ion of the module has been completed.

It is i m p o r t a n t to note th a t Goto Statements appear in
rectangular boxes and their effect upc5n a program’s flow of
control is not illustrate d by an SDD. Restrained usage of
the Goto statement will result in SDDs which will better
1-llustrate a program’s flow of control . The structure d
extensions to JOVIAL J3 (see JSDD Final Report , Sect ion 6)
were introduced to minimize the JOVIAL programmer’s rel iance
upon the Goto Statement.

Occasiona lly, the level of nesting (of decision making - *
e lements) in a program makes it impo ssible to display a code
block In the available number of page columns. In such
case s, it is necessary for the JSDD to create what is
referred to as a stump . A stump Is a diagram continuation.
i~hen the width of a page is such that the display of a code
block can not be accommodated , that code block’s logical
position in the SDD is filled with a stump reference
display. The stump reference display consists of a stump
reference number by which the diagram continuation can be
located. If the HEADING option is on (see Section 5.2) , t hen
the stump refe renc e number is the number of the page on
which the continuation appears . Otherwise , the s t u m p
reference number is the stump’s sequence num ber.

1~

10

- —- — —‘~ - ~~~ ~~~ — -- -—-—~~~~~~~ - .~~
-

~~~
- -* - — - —

The JSDD recognizes three types of comments: in—line
comments , type— I (or sam e line) comments and type—2 (or
C—type ) comments. In—line comments are comments which are
embedded in a JOVIA L statement.  In— line comments are
disp layed in their embedding statements in SDDs. A type—I
comment iS a comment which begins on the same line as a
JOVIAL statement in the input file. In SDDs, type— I comments
appear below the statements to which they refer. A type—2
comment is a comment which appears by itself in the input
file. SSDs display type—2 comments next to the line whi ch
connects the code blocks which precede and su cceed the
comment.

I- icjure ~— 9 is a sample paç~P from a desian diagram produced
by the J~~DD system.

11

-S 
----—--- -~~~-~~~~~~~~~~~ - ~~— 

- - -- -- -



~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ : . S - S - S * *~~~~~ - ~~~~~~~~~~~~~ — —

BESFAVAI~ BL[~~
;.

• • • • • •

.— — ~, ~~~~
S N. U — t ~~ •

:~~~... ~~~~~~~—
,~~~. * a I—. — .;~: ~~~~~~~
• _ . . .
• .

__ . ._ _ _

.•. —5~~~~~ ~~,. _ t_ — .
5 i ~ • *.J~~

9 X ?
.~~~. : :;~—;: 4.,

2 ~~~
~~~~~ • •_ • • a.
~~•• • • 

I 4). . .. ..
:: :: :?: : ..: o
•0.  ~~~~~ 

._ . . .

~~ 
:~:.

~~~~
. :U: :;:

:

~

: :?: I)

:~::~:
: : o
.t ..— .

:~:
:~:

a)
a(0

C • ~ I a
S N . S

2 ..:
MI —

. .5_I

~
~ :~~~.: :~ : ~ . .: ~: ..

• ~ ::~: :~: ~ ~~: ~: ..r &)
•. : ~~: : .: • .

~~~.. :~ 
• .

.. ~, :~~: :: ~~ 
s ..: ::  b

!_g~ E:~ ~R!.~~ • T W •  . . .f l  MIMI ~~~~~~ • M •  r~~
• . .

~~~~~
. •5• li ~~

sI C. : —

— CC Si t i s • ra . • — —
•.• • ~~~~~ :~:

• —
.. . I • S C OS • ~ S ‘ I—.
I

~~~ 
.
.. 

.1-I

‘~~ ::: 
.1..

••  ._ .  . S
g
~ :~: 

::
— •.•  •5. .
• . s•  5~~~~•

~ :~:•t  S . .  ~~ 5 •  

U I

I

)

12

- -  - --—--- —-- ~~~~~~~~~~------ ~-* - - -._--- -- - - -  - - — - - - - * - -—--- - -- --- -- --- ---- -—- -S -—- -~~~~~~~~



- — 7 :~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~ -~- ~~~

- - ~. _  - - ~~ * - -~~~~

3. Invoca tion Diagram Description

The Invocation Diag rammer produces two dif ferent outputs:
(I) a list of procedures that are rlembers of one or more
recurs ive invocation loops , and (2) the Invocation Diagram
itself.

The first output , if it appears on the diagram , occurs
before the actua l di agram under the headi ng “ULTIMATELY
SELF—RECURSI VE .” Under it are listed all procedures that
call themselves , either directly or indirectly. An example
of a di rect recurs iv e call i s a proce dure wh ich conta ins , as
part of i ts code, a call to itself. Indirectly recursive
calls are best i llustrated, again , by an example. Suppose
procedure A can call procedure B which can call procedure C.
If, as part of its code , procedure C conta ins a call to
procedure A , all three procedures (A , B, and C) can
theoretically call themselves.

The Invocat ion Diagram supplies recursion information for
two reasons. First , the d iagrammer has to detect racurs i ve
proce dures because i ts algor i thm for p roduc ing the
Invocation Diagram is itself recursive. A recursive
procedure could thus cause the diagraminer to diagram
forever. Therefore , recursiv e procedures are only ex panded
once in the diagram , and thereafter- are simply printed and
flagged. Since this affects the readability of the diagram ,
the recurs ion information ought to be summarized for the
user.

Secondly, i t can be argued that recurs ion has no p lace in
JOVI AL programs (JOVIAL J3 does not support recursion ), and
thus should be banned. The recursion information can be
thought of as a warn ing to the p rogrammer that i llegal
recurs ion is a poss ibi li ty in the subm i tted p rogram
structure. Note that the Invocation Diagrammer only reports
the ~~~~~~~~~~ of recurs ion — it is qui te poss ib le that the
program in question avoids actually making a recursive call.

The second output is the Invocation Diagram itself. The
diag ram comes in two parts: a ma in p roce dure di agram and
diagrams of continuations and independent routines. The
diagram of the main procedure , if it occurs , occurs first.
I nvocat ion Diagrams are quite simple to read — all procedure
names wh ich are connected horizontally to a vertical line
are calle d by the procedure whose name started the vertical
l ine. If the main program exists , it is the top level of

13 

— - ~~~~~~~ -—- - ---- - - — - ~~~~~~~---- - - - - - - - - ---- - -  - -



—~~~~~------=- -— ~~~~~~~~~ — - — —~~ --~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

the diagram. For example:

‘—— PROC I, ,
‘ ‘——P ROC2+
, I

‘ -‘--—PROC3
I I .1

‘ ‘ ‘—PI10C4-I I

‘ ‘—PROCS*
I

In this example, PROC I calls PROC2, PROC3 , and PROC5.
Additionally, we see that PROC3 calls PWOC4, and some
invisible procedure calls PROCI. That procedure Is at the
top level of this particular diagram , because PROC I hangs
off the leftmost vert ical line possible. There is still
more information here; we know PROC2 is an external
procedure because it is flagged w i th a “ + “ . PROC5 is
recursive — it Is flagged with a “ *“ .

Main diagram continuations (cause d by running off the right
side of the page) and independent procedures (procedures not
called by any of the procedures which are directly or
indirectly called by the main program) occur at the end of
the diagram , under the heading “CONTINUATIONS AND
INDEPENDENT ROUTINES.” Continuations consist of “stumps ”
which correspond to similar “stumps ” in the main diagram.
If confronted by:

5,

5, 

In the main program , the user can find the continuation
below , which starts w ith:

———— — —— 3
I

‘

etc.

Stump continuat ions occur in numerical order , af ter
independent procedure diagrams.

The aim of the diagrammer is to diagram all proc edures ,

14 



regardless of whether they are called (directly or
indirectly) by the main program. However , t h e  fact  that a
proc edure is not called directly or indirectly by the main
program is not a guarantee that i t  w ill appear as an
“Independent” procedur e. It is quite possible that a second
“independent” procedure whose diagram is output before that
of the first procedure may call the first. In that case ,
the f i rst proc edure’s “independent” diagra m is suppressed.
Nevert heless , the f i rst proce dure’s d iagram w ill have been
gener ated as part of the second procedure’s diagram. No
proc edure will ever remain both uncalled and undiagrarnnied.

/



N- -- — - - - - — _ _ _ _ _ _ _

V ‘ — - - —5- — *

4. Running the JSDO System

The JSDD system consists of three programs: the Design
Diagram Data Base Generator (DDDG), the Design Diagram
Generator (DDG) and the Invocation Diagrammer.

The DDDG performs a syntactic analysis of the input JOVIAL
program and outputs a three file data base (for use by the

* DOG and the Invocat ion Diagrammer). The DDDG is designed to
analyze any program that has been compiled by JOVIAL J3 with
no error or warning messages. Only one JOV !AL J3 constraint
has been altered — the largest DEFINE directive that may
occur is one containing 132 characters (instead of 300),
However , neither of these lim its is a real constraint on -

fl

DEFINE directive size, since DEFINEs can be nested to any
depth.

The DDG outputs a Structured Design Diagram (SDD ) of the
input program in the format specified by the preset
variables in the compool OPT (see Section 5.2).

The Invocation Diagrammer outputs an invocation diagram of
the input program in the format specified by the preset
variables in the compoo l OPT.

Since all diagram formatting Is performed by the DDG and
Invocation Diagrammer , one exe cution of the DDDG on an input
program is sufficient to produce diagrams having a wide
variety of formats.

The DDDG (DDDG.OBJ ) must be loaded with the object segments
SYNTH.OBJ, NTABLES.OBJ , DATA.OBJ and SPOOL.OBJ. The 000G
requires five files:

(logical unit number)
II

The JOVIAL program to be diagrammed.
12

The DDDG message file. This file will contain any
error messages generated by the D000 execution .

13
FILE I (see the JSDD Program Description Section
4.4). This file is part of the DDG data base.

.5 14
FILE 2 (see the JSDD Program Description , Section
4.4). This file is part of the DDG data base.

15

16 

— — -S



r r - — — ~~~~~~~~~~~~~~~~~~~ -~~~~~~~I~~~~5-~~~~~~~~~~ - - - ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
---- - 

- -- -- - - -

~~~~~

• FILE 0 (see the JSDD Program Description , Section
4.4). This file is the data base used by the
Invocat ion Diagrammer.

-
The DOG (DDG.OBJ) must be loaded with the object segments
OPT.OBJ , DEBUG.OBJ and SPOOL.OBJ . The DOG opera tes on ten

- f i les:

(logical unit number)
II

FILE I (from the 01)00).
12

The DDG message file. This file contains error
me ssages and debugging messa ges generate d by a DDG
execut ion.

13
FILE 2 (from the DDDG).

14
FILE 3’l (F ILE 3 version 1 — see the JSDD Program
Descr ip t ion, Sect ion 4.5.1 and Appendix C). This
f i le is part of the DOG interm ediate data base and
can be destroyed after DOG execution.

15
FILE 4’I (FILE 4 version I — see JSDD Program
Description Section 4.5.1 and Appendix C). This
f i le Is part of the DOG intermed iete data base and
can be destroyed after DOG execution.

16
PUTOUT’I (tem porary diagram version I). This file
can be destroyed after DOG execution.

I i
FINAL’OUT. This file contains the SDD produced by
the DOG.

‘a
FILE 3’2 (FILE 3 version 2). This file is part of
the DOG intermediate data base and can be
destroyed after DOG execution.

19
FILE 4’2 (FILE 4 version 2). This file is pa r t of
the DOG Interm ediate data base and can be
destroyed after DOG execution.

20
PU11JUT’2 (temporary diagram version 2). This file
can he destroyed after DDG execution.

17

- - - 5 - - - -S - --- - - - 5- --~~~~~--- - - — - -- --- -5-- - - - - - -5- -

‘- -S --5------__-- - - -—- —.5- — -5-- -

The Invocation Diagrammer (INVOC.OBJ) must be loaded with
the object segments OPT.OBJ and SPOOL.OBJ. The Invocation
Diagrammer operates on three files:

(logical unit number)
I I

FILE 0 (from the D000).
12

The Invocation Diagrammer message file. This file
wi ll contain any error messages generated by the
Invocation Diagrammer.

13
The invocation diagram.

Sect ion 6 contains the control cards necessary to run the
JSDO components on the MULTICS GCOS simulator.

— - -
— ~~ ? . ‘~~~~~ _

5. DetaIled Options

This section lIsts and describes detailed options for
ruming each of the JSDD programs. Sections 5.1 , 5.2, and
5.3 discuss options for the Design Diagram Database
Generator, the Design Diagram Generator, and the Invocation
Diagrammer, respectively.

5.1 DDOG Options

Although most formatting of the design diagrams should be
done wi th the DOG options, there are two options available
with the DDOG which directly impact the content and
apoearance of the final SDDs.

These options are set by means of comment ~toggles”, whi chare inserted into the source input file by the user either
as extra comments or as additional text In existing
comments. The special form of the toggle allows It to be
distinguished from ordinary comment text. Toggle syntax is
as follows:

(1) “<any text> (<toggle name>] <any text>-”
or:

(2) -“<any text> (‘<toggle name>] <any text>”

Only the first toggle in a comment is processed; all others
are ignored.

The syn~tax in case (1) above means that the toggle is to beturned g~; case (2) means that it is to be turned QU.
These actions are forced regardless of the toggle’s current
state.

For example ,

-“a3MMENT TEXT COMMENT TEXT (ExPAND]COMMENT TEXT-”

would turn on the EXPAND toggle, while

-“COMMENT TEXT COMMENT TEXT(-’EXPAND]COMMENT TEXT ’

would turn it off.

19

-5- - . - ~~~~- ~~~~~~~~~~ —- - - -- -

pr— ~~
-_- —- — -- - - -- - ~~~ — - - _ _ _ .,, ~~~~

The two toggles currently avai lable are EXPAND and ASIS.
when EXPAND is on, the expanded text of each DEFINE
directive (macro) name is substituted for the name. EXPAND
toggles can appear anywhere In the source input.

The ASIS toggle is more complex, but its use can lead to
much improved SODs. when ASIS is on, each complete source
input text line becomes one line in the output SOD. The
utility of this can easily be seen; suppose that a user had

- set up a portion of a program (say, data declarations) in a
special manner, so that certain items appeared under certain
columns. He/she would not want the Design Diagraniner to
chop up this carefully constructed pattern, as It almost
certainly would. The solution is to insert ASIS J

~bracketsM
1 . around the code in question. The Design Diagraniner wi ll

then preserve this special code “as—is”.

The only rules governing placement of ASIS toggles are:

I) ASIS toggles must come. in pairs, or “brackets”; for
•very instance of an ASIS activation, there must be a
de—activation.

2) ASIS brackets can only occur where it would be
semantically and syntactically legal to place JOVIAL
BEGIN—END brackets (this does not include use of BEGIN and
END in array or table declarations).

Failure to follow these rules will invariably result in
serious DDDG errors and fatal DOG errors.
There is another toggle implemented , called DEBUG. This
causes a history of the DDDG parse to be written to the
error file. Although useful for debugging, and for those
interested in the mechanics of an LALR (k) parse, DEBUG is of
no value to the ordinary user.

5.2 DDG Options

The DOG accepts options which permit the user to specify a
wide variety of JOVIAL Structured Design Diagram formats.

The options are defined in a common block in the OPT compool
(see Appendi x A).

There is no facility currently available for setting the DOG
options. Alteration of options Involves editing the options
compool and recompiling it.

20

_ _ _

r— - - ~~~~~~~~ r-

The following is a list of option declarations and
descriptions of their meanings and uses.

ITEM DISPLAY’DELIM B P 0 $
If DISPLAY’DELIM is on (i.e. preset to I) , BLOCK
DELIMITERS are displayed on the design diagram.
O t e r h w i s e, they are not .

BLOCK D E L I M I T ERS a r e:
I) BEGiNs which start COMPOUND STATEMENTs
2) ENDs which terminate COMPOUND STATEMENTs and
ALt ERNATI VE STATEMENTs
3) (END DO]
4) [END CASE]

DISPLAY’DE LIM also controls the printing of COMMENTS
and LABELS associated with the BLOCK DELIMITERS .

It is recommended that DISPLAY’DELIM be turned off
unless the input program has important CO MMENTS or
LABELS associated wit h BLOCK DELIMITERS .

ITEM DOUBLE’SPACE B P 0 $
If DOUBLE’SPAC E is on, program text within the diagram
is doub le space d, otherw ise , text is single spaced.

Double spacing can increase the execution time of the
DDG significantly If the input program is large
(because of the double buffering system—see Section
4.~~.3 of the JSDD Program Description).

it is recommended that diagrams of large programs be
sing le spaced.

ITEM MARGIN I 3 6 S P 5 $
MA R GIN se ts the left mar gin of the diagram. The above
declaration will cause five blank columns to begin each
l ine of the diagram .

ITEM MESS’S~’4 I 36 S P 0 $
MESS’SM directs error and debug messages (see JSDD

• Program Strucure Section 7.2) to either a term inal or
to an outpu t f il e , If the value of MESS’SV~ is preset to
0, then output Is directed to the file whose device
numbe r Is 12. Otherwise, output is directed to the user
term inal.

2 1

--5- —---5 - - - -~~ - _ _ _ ___ - —- 5- -- -

- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - -- -~~~~~~~~~~~~~~~

ITEM PAGE’LNGTH 1 36 S P 60 $
PAGE’LNGTH should be set to the number of print lines
on the paper on which the diagram is to be printed.
PAGE’LNGTH cannot be used to reserve space at the
bottom of pages for page f ooters. A footer feature is
not availa ble on this version of the JSDD.

ITEM PAGE’~ IDTH I 36 S P 132 S
PAGE’~~IDTH is the number of the rightmost column whic?-
is to be used for printing. The readability of diagrams
is improved as the difference of PAGE’IdIDTH and MARGIN
increases (the number of stumps decreases) . Execution
time can be improved by setting PAGE’VIIDTH to a high
value and MARG IN to a low one becaus e f e w e r output
lines are required.

ITEM ST’MAX S P 35 $
ST’MAX is the maximum number of column5 which may be
spanned by the text of a statement unit before
wraparound occurs.

In general, a low valued ST-’MAX will produce a diagram
having fewer stumps than a high valued ST’MAX. However,
a diagram produced with a low valued ST’MAX may be
difficult to read.

The value of PAGE’WIDTH should be considered when
assigning a value to ST-’MAX.

ITEM HEAD ING B P I $
If HEADING is on page headings are displayed at the top
of each diagram page. Also 4 pages are numbered, stumps
are referenced by page numbers and a table of contents
is available.

If HEADING is off, no page headings are displayed ,
pages are not numbered , stumps are referenced by
sequence number and no tabl e of contents is available.

The HEADER, PGM’NAME, NAME-’INDEX and HEAD’NO opt ions
described below relate to the HEADING option.

ARRAY HEADER 10 h 150 $
The HEADER array contains the text to be displayed as

• page headings (if HEADING is on). Elements of HEADER
must be preset. For example :

BEGIN — -

2IH (DRAPER LAB DIAGRAMMER)
11H (DIAGRAM OF

END

22

-
~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 

—5—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ ~~~~~~~~~ ~•-~S•~~~ _-S -

In this case , page three’s heading might appear:
DRAPER LAB DIAGRA MMER PAGE 3
DIAGRAM OF PROGRAM’NAME

HEADER (SOS ) will always be followed by the page number
which will start in column PAGE’~4 IOTH—I0. Care should
be taken to avoid overwriting the last ten columns.

ITEM PGM’NAME h 150 $
PGM’NAME contains the name of the program being
diagrammed. The contents of PGM’NAME wi l l  appear in the
pag e headings of pages di sp laying the d iagram of the
main program.

ITEM NAME’INDEX 1 36 S P I $
• NAME’INDE X is the index into HEADER of the text line in

w h i c h  the  name  of the program , procedure or close being
diagrammed will appear. In the above example ,
NAME’INDEX was set to one. NAME’INDEX may be set to a
negative number if display of the module name is not
desired.

ITEM HEAD’NO I 36 S P 1 S
HEAD’NO is the index of the last element of HEADER
which was preset. In the above example , HEAD-’NO would
have been set to one.

Normally the JSDD leaves one blank line between the
page heading and the diagram text. The number of
intervening blank lines can be increased by presetting
additional HEADER e lements to IH( ) and incrementing
HEAD’NO accordingly.

ITEM TABLE ’OF’CONTENTS B P I S
If TABLE’OF’CONTENTS and HEADING are both on, then a
table of contents Is generated for the diagram . The
table lists the modules displayed in the diagram and
the pages on which the displays begin.

The tabl e of contents appears after the title page (if
there is a title page).

ITEM TITLE’S~4 B P I $
TITLE’SW controls the printing of the title page. If it
is on, the t i tle page appears on page one (and
subsequent pages , if mor e are necessary). The array
TITLE and TITLE’NO also relate to the TITLE’SW flag.

23

- - - —-

~

- -

~

- - - - - -  - - -



- 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~

- -- ——-— —--
~
--5—----- 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ -____ _______ - —-

ARRAY TITLE 70 H ISO $
The TITLE array contains the text to be displayed on
the title page. Its elements are preset the same way
that HEADER’ s elements are preset . a

ITEM TITLE’NO I 36 S P I $ -

TITLE’NO is the index into TITLE of the last preset
element.

5.3 Invocation Diagramer Options

The Invocation Diagramer has only thtee user options,
PAGE’VUDTH, PAGE’LNGTH, and PGM’NAME. - All of these options
are set exactly the same way as they are for the DDG. In

• 
- fact , the Invocation Diagraniner uses an exact copy of the

DOG options compool for its own options. This being the
case , the same compoo l object segment .can be loaded for the
Invocation Diagrammer that is loaded for the DDG .

Thus, in most cases it will not be necessary to set
Invocation Diagrammer options — simply load the options
compool object segment used t~ run the DOG. However , if the
DOG was not run, or a PAGE’I~4IDTH, PAGE’LNGTH, or PGM’NAME
(title name ) change needs to t~Ie made, refer to Section 5.2for detailed instructions an~i default attributes.

5-,

4

-, 24

- -  _ _._  ~~~~~~~~—- - -
~-~~~~— — — - S  --— — -— - 

~~~~~~~~~~~~~~
—-- —

~~~~~~~~~



-_ - — —~~~~~~~--—~ -——- -V-—-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- _ -
-

6. Control Cards For Running the JSDD

The following sections give detailed GCOS Encapsulator
control cards for running the various programs whi ch make up
the JOVIAL Structured Design Diagrammer (JSDD). These
contro l cards are applicable to the OCOS Encapsulator system
available under the MULTICS operating system. A mapp ing
from thes e control car ds to ac tual OCOS control cards is
straightforward, made necessary only by the di f ferences
between MULTICS and GCOS f i le system structure.

Card s common to all decks are SNUMB, IDENT, LOP4LOAD, OPTION ,
LIMITS, and ENDJOB . All these are standard , except for
LOW LOAD and LIMI TS. LOMLOAD Is present because of bugs in
both JOVIAL and the OCOS Encapsulator loader. The JOVIAL J3
c o m p i l e r s u p p l i e d fo r this contract generates incorrect
func tion l inkages whi ch overwr i te areas of low core at
execut ion time. The LO~LOAD card (S LOWLOAD 1 0000) causes
a blank area of 10000 words to precede all programs. This
ensures that nothing is loaded into the region that JOVIAL
may overwrite. As for the GCOS Encapsulator loader , it
simply does not function properly without the LO~LOAD card.

The LIMITS card is included in all control card decks. 84k
is the minimum core region that should be specified (92K for
the DDG) — the time limit field should vary with the size of
the program to be diagrammed. Time limits in the sample
control cards are extremely high; the bui l t—i n JOVIAL
default should be adequate in most cases.

There is no execute card In any of the sample cont ro l card
decks — th is is because that card is included in the
“canned” deck which is inserted at run time in place of:

$ select >m isc_ libraries>jocit>execute

This “canned ” deck consists of the following cards:

$ l ibrary z*,*z
S execute dump
S prmfl z* ,r,r,>ml>jo cit>jovlib.020377
S prrnfl *z ,r, s ,>ml> jocit >oldlib.020377

The dump option can be de leted at the user’s discretion.

Sections 6.1 , 6.2, and 6.3 c o n t a i n and describe the control
cards used to execute the DDOG, the DOG, and the Invocat ion
Di agrammer , respectively.

25

— - — - - ~~~~~~~~~ - -~_ _ - -
-

- - - - - -
___ _______________

- 6.1 000G Control Cards

The control cards needed to execute the DDDG are :

$ snumb efs
$ ident Strovink.5581c1412
$ lowl oad 1 0000
$ option jovial
$ select phI8.obj
$ select ntables.obj
$ select data.obj
$ select synth.obj
S select spool.obj
$ select >misc...li braries>jocit>execute
$ lim its 90,84k
$ prmfl IO ,w ,s,jovwrk>phI8.mon.list
$ prmf 1 II ,w,s,ph24.gcos
$ prmfl 12 ,w ,s,error24
$ prmfl 13 ,w,s,ph24fI
$ prmf l 14,w ,s,ph24f2
$ prmfl 15 ,w ,s,ph24fO
$ end job

Object files loaded by this deck are: phI8.obj (DDDG),
ntables.obj (parsing tables), data.obj (global variable
declarations), synth.obj ~external SYNTH procedure), and
spool.obj (compool object file for string package).

Files used by DDDG are: 10 (not currently used), II (source
input to DDOG), 12 (error file), 13 (DDDG output file I
(TMFILE I-”)), 14 (D000 output file 2 (“FILE 2”)), and 15
(D000 output file 0 (“FILE 0”)).

6.2 DDG Control Cards

The control cards needed to execute the DDG are:

$ snumb mhw
$ ident Whitworth.558)cI4I2
$ lowload 10000
$ option jovial
$ select ph24.’~~j
S select spoc.~~.obj$ select opt.obj
S select debug.obj
$ select >misc li brarles>jocit>execute
$ limits 999, 128k
$ prmfl l0,w ,s, jovwrk>ph24.mon.list

26

—~~~~.-——— - -- - - -5-- -

— — - - -‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~F- - - 5 — — 5- - - -
~

-S
~~’1

$ prmfl II ,w ,s,ph24fl
S prm fl (2 ,w ,s,blah
$ prmf l 13 ,w ,s,ph24f2
$ prmfl 14,w ,s,ph24f31
S prmf l I5 ,w ,s,ph24f4I
S prmfl I6 ,w ,s,tmp l
$ prmf l 17 ,w ,s,out’ph24f
S prmfl 18 ,w ,s ,ph24f32
S prmfl 19 ,w ,s ,ph24f42
S prmnf l 20 ,w ,s ,tmp2
S endjob

5- Object files loaded by this deck are: ph24.ob j (DOG),
spoo l.obj (compoo l object f i le for str ing package) , opt.obj
(option compool object f i l e) , and dehug.obj (debug toggle
compool object file).

Files used by the DOG are: 10 (not cu rrently used), II
(“FI LE 1” from DDDG) , 12 (error f i le) , 13 (“FILE 2” f r o m
DDDG) , 14 (f i rs t of double—buffered pair of t emporary f i les
referred to as “FILE 3”) , IS (f i rs t of double—buffered pair
of temporary f i les re fer red to as “FILE 4 ”) , 16 (f i rst of
doub le—buffered pair of temporary output f i les) , 17
(permanent output f i le) , 18 (second or double—buffered pair
of temporary f i les referred to as “FILE 3”), 19 (second of
double—buffered pair of temporary files referred to as “FiLE
4”), 20 (second of doubl e—buffered pair of temporary output
f lies).

Files 14 ,15 ,16 ,18 ,19 , and 20 can and should be deleted
followin g execution of the DDO. This can be accomplished in
the contro l card deck by appropriate changes in the fi le
cards. Files 11 , 12 , and 13 should be deleted with
di scretion , since another Design Diagram with different
format speci f icat ions may be desired.

6.3 Invocation Diagrammer Contro l Cards

The control cards needed to execute the Invocation
Diagrammer are:

S snum b efs
S ldent Strovlnk.5581c1412

•
S lowload 1 0000
$ option jovial
$ se lect invoc.obj
S select spool.obj
$ select opt.obj
S se lect >misc ...libraries>joc i t>execute
S limits 25,84k

27

prmf l I0,w ,s,jovwrk>invoc.mon.list
$ prmfl 11 ,w,s,tstf0

-~ $ prmfl 12 ,w ,s,errors
$ prmfl 13,w ,s,ph24
S end job

Object files loaded by this deck are: invoc .obj (Invocation
Diagrammer), spool.obj (compool object file for string
package), and opt.obj (option compool object file).

Files used by the Invocation Diagrammer are: 10 (not
currently used) , II (“FILE 0” from DDOG) , 12 (error f i le) ,

S 13 (Invocation Diagrammer output) .

2
8

—— -~~ -— - 5 - - - ~~~~~~~ -~~~~~~~~~~~~ — - 5 5-_— ~~~

_
~
j__i

• - — -5-— 5-
_____ ___________

‘5,

REF ERENCES

1. DahI , O.—J ., Dijkstra , E. N., and Hoar e, C. A. R.,
~tLu.~.tjj~red Frogranininc, Academic Press , New York , 197 2.

2. Hamilton , M., and Z e l d i n , S., Iop—Dc~wn, Bottom—U p
-

- ~truc~~~.g~ ~~mmtri~ m d E~~g ram Structuring,
(Re vision I) , Charles Stark Draper Laboratory, Inc.,
Cam bridge , Ma. — E—2728, Dec ember 1972.

3. McGowan , C. L., and Kelly, J. P., Top—Down Structured
~~~grammi ny 1echnj~jj~~ , Petrocell i/Charter, New Yor k,
1975.

4. ~taz~dard ~Q~~~LtL~.i: ELQ.~L~.LLIIII1.U9. L~nai.ja5o.~ L~~ Ai~Eorce C~ uigi~~~ ~~ Con~rQJ. ~~stems , Short Title: ~~Q
2.~QQ., A ir Force Manual AFM 1 00—24, Reprint dated 2 1
April 1972.

5. ~t~ru c t urea ~~~g~a maj~~~, ~~~~~~~ Vo lume •L,
Erogramming L~nguag~~ atandar~~ , Final Report, IBM
Corporation, FSD 74—0288, March 1 5, 1 975.

6. DeRerner , F. L., P r j ~~j Translators f.~~L~~jçj Langu~ages, Ph.D. Thesis at the Ma ssachusetts
I n s t i t u t e  of Technology, Cambridge , Ma ssachusetts ,
Sept. 1969.

7. Lalonde , N. P., An Effic~~~~ LALR Parser Qenerator,
Techn ical Report CSRG—2 , M.Sc. Thesis, Un iversity of
Toronto , Toronto , Ontar io , 1970.

8. McKeeman , ~~~. M., Horning , J. J., and Wortman , D. B.,
A Compijg,~ Generator 1niplemente~ ~~~ t.b.~. L~M

~~~~~~ P r e n t i c e  H a l l , 1970.

29

-~~

—
- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 
- —.----—-— -—

~~~
—---

~~~~~~~
,
~~~~~~~~~~

Appendix A. The DOG and Invocation Diagrammer Options
Comp 001

All DOG user options are contained in the compool OPT which
is shown below . Setting options involves changing the preset
values in OPT and recompiling the result.

start S
“ This is the options compool for instructions “

“ in set t ing options , see JSDD User’s Manual. “
common options $
begin
item display’delim b p 0 $

-

- item double’space b p 0 S
• item ma r g i n i 3ó s p 5 S

Item mess’sw i 36 s p I S
item page ’lngth i 36 s p 60 S
item page’width 1 36 s p 132 S
item st’max 1 36 s p 30 S
item heading b p 1 S
array header 10 h 150 $
begin
57h(c s draper laboratory jovial structured design diagra nxner)
18h(DESIGN DIAGRAM OF)
end
item pgm’name h ISO p 21h(the design diagrammer) S
item low’lim 1 36 s p 20 $
item max-’width i 36 s p 40 S
item name’index i 36 s p I $
item head-’no i 36 s p I $
item table’of’contents b p I $
Item title’sw b p I S
array title 70 h 150 S

begin
lh ()
lh (
lh (
41h (this listing consists of output from)
52h(the charles stark draper laboratory’s jovial j3)
34h(structured design diagramer.)
lh ()
lh ()
lh ()
lh (
42h(principal designers and implementors
lh()
37h(gary w. goddard , csdl staff)

30

5- --- ——- - - — - 5 -

- - -~~~~~~~

1~

- - 39h(mark h. whitworth , csdl staff)
52h(eric f. strov ink , graduate student, m.i.t.)
25h(compute r science division)
57h(the charles stark draper laboratory, inc., cambridge, ma.)
Ih (
end
i t e m t i t l e’no 1 36 s p Ii S

end
te rm S

ut , ±111±5

